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Abstract

End e}ects for prismatic anisotropic beams with thin!walled\ open cross!sections are analyzed by the
variational!asymptotic method[ The decay rates for disturbances at the ends of prismatic beams are evaluated\
and the most in~uential end disturbances are incorporated into a re_ned beam theory[ Thus\ the foundations
of Vlasov|s theory\ as well as restrictions on its applicability\ are obtained from the variational!asymptotic
point of view[ Vlasov|s theory is proved to be asymptotically correct for isotropic I!beams[ The asymptotically
correct generalization of Vlasov|s theory for static behavior of anisotropic beams is presented[ In light of
this development\ various published generalizations of Vlasov|s theory for thin!walled anisotropic beams
are discussed[ Comparisons with a numerical 2!D analysis are provided\ showing that the present approach
gives the closest agreement of all published theories[ The procedure can be applied to any thin!walled beam
with open cross!sections[ Þ 0877 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In some cases classical beam theory is not su.cient for accurately predicting the internal stressÐ
strain state[ In order to explain the nature of the discrepancies let us consider a prismatic beam
that occupies a domain

V � "9 ³ x0 ³ l\ "x1\ x2# $ S#

with some prescribed cross!section S^ x0\ x1\ x2 are Cartesian coordinates^ and 1V is the boundary
of V[ The system of equations governing displacements of the beam consists of four sets of
equations] the equilibrium equation
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1sij

1xj

� 9\ xi $ V "0#

the constitutive law

sij � Aijklokl "1#

the kinematic relations

okl �
0
1 0

1uk

1xl

¦
1ul

1xk1 "2#

and the free boundary conditions at the lateral surface

sijnj � 9 for xi $ 1V "3#

Here components of the displacement are denoted as ui"x0\ x1\ x2#^ stress and strain tensors as
sij"x0\ x1\ x2# and oij"x0\ x1\ x2#\ respectively^ the unit normal vector at the beam boundary as
ni"x1\ x2#^ and the tensor of material constants as Aijkl"x1\ x2#[ Boundary conditions at the ends of
the beam x0 � 9 and x0 � l need not be speci_ed at this stage[ Note that material constants are
independent of x0 due to the assumed spanwise uniformity[ To understand the behavior of the
solutions of eqns "0#Ð"3# it is useful to _nd particular solutions of the form

ui"x0\ x1\ x2# � u9
i "x1\ x2#eikx0

sij"x0\ x1\ x2# � s9
ij"x1\ x2#eikx0

oij"x0\ x1\ x2# � o9
ij"x1\ x2#eikx0 "4#

where k is the wave number[ By substituting eqns "4# into eqns "0#Ð"3# one can obtain the reduced
system

1s9
ia

1xa

¦iks9
0i � 9\ "x1\ x2# $ S "5#

s9
ij � Aijklo

9
kl "6#

o9
ab �

0
1 0

1u9
a

1xb

¦
1u9

b

1xa1 "7#

o9
a0 �

0
1 0

1u9
0

1xa

¦iku9
a1 "8#

o9
00 � iku9

0 "09#

s9
abnb � 9 at "x1\ x2# $ 1S "00#

where nb is outward unit normal to the boundary 1S of the cross!section S^ indices a and b vary
from 1Ð2[

Equations "5#Ð"00# determine an eigenvalue problem] a non!trivial solution of eqns "5#Ð"00#
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Fig[ 0[ Schematic of I!beam cross!section and coordinate system "axis x0 0 x is directed outward#[

Fig[ 1[ First {{non!classical|| "Vlasov# mode for isotropic I!beam] I"bk# � 9[0092\ h:b � 9[91[

exists only for particular values of k[ The corresponding set of eigenfunctions comprises an in_nite!
dimensional basis for beam solutions[ Analysis of eqns "5#Ð"00# reveals that there are only four
real eigenvalues k\ all zero[ The four eigenfunctions corresponding to k � 9 represent an {{interior||
stress state\ which is described by classical beam theory[ All the other values of k are complex\ and
I"k# has the sense of a decay rate from the left end if I"k# × 9 and from the right end otherwise[
Eigenproblem eqns "5#Ð"00# is solved numerically "see Volovoi et al[\ 0884^ Volovoi et al[\ 0887#
for a cross!section of arbitrary geometry and material properties[

Classical beam theory with free lateral surfaces can be viewed as a truncation of the solution
including only the _rst four of the base eigenfunctions\ and it is {{exponentially|| exact in the sense
that all corrections stem from end e}ects which decay exponentially as they penetrate in the interior
of the beam[ For some cross!sections the decay rate might be small\ so that the end e}ects
signi_cantly in~uence the global elastic behavior of beams[ For such beams it is important to re_ne
classical theory by incorporation of the disturbances with the slowest decay rate[

Let us focus our attention on one such type\ thin!walled beams with open cross!sections[ First
we consider a symmetric isotropic I!beam "a schematic of the cross!section is shown in Fig[ 0#[
Here the web height is denoted as a\ the ~ange width as b\ and uniform thickness of both ~anges
and the web as h[ Figures 1 and 2 depict the two {{non!classical|| modes with the slowest decay
rates for a:b � 9[4\ h:b � 9[91\ and Poisson ratio n � 9[31[

Two important facts were established during parametric studies] while the numerical values of
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Fig[ 2[ Second {{non!classical|| "camber# mode for isotropic I!beam] I"bk# � 0[7877\ h:b � 9[91[

Fig[ 3[ Scaled up out!of!plane displacements of the _rst {{non!classical|| mode for isotropic I!beam] I"bk# � 9[0092[

the decay rate varied with the parameters of the beam\ the shape of the modes remained essentially
the same\ and the _rst mode "Fig[ 1# always had a much smaller decay rate for isotropic I!beams
than the second mode "Fig[ 2#[ Both modes have purely imaginary k[ It is noted that in this
example I"bk# � 9[0092 for the _rst mode implies that the amplitude of the disturbances at the
end for this mode will decrease by a factor of e−0 at a distance from the end of about 8b\ while for
the second mode "I"bk# � 0[7877# it will happen much closer\ at a distance slightly exceeding b:1[

Study of the _rst {{non!classical mode|| "Fig[ 1# reveals that it has a shape closely resembling the
rotation of a cross!section due to torsion[ This implies that the _rst correction to the classical beam
theory\ which would include this slowly decaying mode\ does not require a new degree of freedom]
torsional rotation of the cross!section is already among the modes described by classical beam
theory[ This conclusion is further supported by studying scaled up out!of!plane displacements for
this mode\ which clearly correspond to classical St Venant warping "see Fig[ 3#[ This observation
agrees very well with the hypothesis made by Vlasov for thin!walled beams\ Vlasov "0850#[ It turns
out that good qualitative and remarkably good quantitative correlation was observed between the
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Fig[ 4[ Decay rate for isotropic I!beams^ a:b � 9[4[ "The top picture demonstrates the di}erence between the two results
in the bottom picture[#

predictions of Vlasov|s theory and numerical results "see Fig[ 4\ and Section {{Comparing Theo!
ries||#[ All this prompted a detailed investigation of Vlasov|s theory in an attempt to explain this
coincidence[

The basic assumptions of Vlasov|s theory\ Vlasov "0850#\ are

"A# The cross!section remains rigid in its own plane[
"B# Shear strains are small[
"C# The Kirchho}ÐLove assumption of classical shell theory remains valid[

Using assumption C\ the 2!D problem is cast in terms of shell variables[ Curvilinear coordinates
are introduced] x0 along the beam axis\ and in the cross!sectional\ y along the contour and z normal
to the contour "see Fig[ 0#[ Corresponding displacements are v0 and v1 and v2\ respectively[
Unknowns are functions of x0 and y\ with dependence on z provided by the Kirchho} hypothesis[
From assumption A expressions for in!plane displacements are obtained as

v1"x0\ y# � ðUa"x0#¦u"x0#xbebaŁ
dxa

dy

v2"x0\ y# � eabUb"x0#
dxa

dy
−

0
1

u"x0#
d"xaxa#

dy
"01#

where eba is the 1!D LeviÐCivita symbol^ Ua and u are the cross!section translations along the
Cartesian coordinate xa and the rotation about the x0 axis\ respectively[ Assumption B implies that

v0\y¦v1\0 0 o01 � 9 "02#
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Integrating eqn "02# with respect to y and substituting the expression for v1\0\ obtained by di}er!
entiation of eqns "01#\ one obtains an expression for the out!of!plane displacement

v0"x0\ y# � U0−U?axa−u?"x0#h"y# "03#

where U0 is translation of a cross!section along the x0 and h"y# is a sectorial coordinate of point B
with respect to point O "see Fig[ 0#]

h"y# � g
B

O

eabxb

dxa

dy
0 g

B

O

r = n dy "04#

Here r is a radius vector from the origin\ and n is an outward unit normal to the contour vector in
the plane of a cross!section^ integration is performed in the direction of the contour coordinate[
When evaluated at the junction\ h"y# should have the same value in the branches meeting at this
junction[

Using the displacement _eld represented by eqns "01# and "03# one can calculate strains\
substitute them into the 2!D strain energy\ and explicitly integrate over the cross!section to obtain
the 0!D energy per unit length of the beam[ The torsional part "which for symmetric cases is
uncoupled from bending and extensional parts# has the following form

1Erefined � GJu?1¦Eðf1Łuý1 "05#

where G and E are the shear and Young|s moduli\ respectively\ J is the torsional constant of the
cross!section\ f is the St Venant warping function "which for thin!walled beams can be approxi!
mated by a sectorial coordinate#\ and ð=Ł refers to integration over the cross!section[ The second
term in eqn "05# leads to the introduction of the so!called bi!moment*which is proportional to
uý and is represented by a system of forces statically equivalent to zero applied to a cross!section[
Let us note that consistent use of the displacement _eld\ in eqns "01# and eqn "03# in the above
derivation\ leads to a material coe.cient E:"0−n1# instead of E in eqns "05#[ However\ in his
application of the constitutive relations\ Vlasov _rst neglects stresses in the contour direction\ not
strains "as kinematic assumption B would require#[ This contradictory assumption leads to the
desired coe.cient in eqn "05#\ but it also resulted in a certain degree of confusion when attempts
were made to generalize Vlasov|s theory for anisotropic beams[ Some researchers "Gjelsvik\ 0870^
Wu and Sun\ 0881# tacitly recommend the neglect of stresses\ correctly noting that the alternative
will lead to oversti}ening the structure[ Others\ notably Bauld and Tzeng "0873# and Chandra and
Chopra "0880# consistently followed Vlasov|s explicitly stated assumption A and neglected strains[
While the resulting material coe.cients satisfying these two contradictory assumptions di}er by a
factor of 0−n1 for isotropic beams "which happens to be close to unity#\ the di}erence for
anisotropic beams can be dramatic for certain lay!ups[ The results presented here prove the validity
of neglecting stresses in the contour direction and the invalidity of assumption A[

It should be noted that Smith and Chopra "0880# derived a thin!walled beam theory for box
beams which purports to be an improvement over one in which the stresses are set equal to zero[
The results of these theories are very close together\ and the claim that their theory is superior is
based on only one experimental data point\ which is only slightly closer to one curve than the
other[ Since exact 2!D solution contains nonzero contour stresses it is clear that such terms will
appear in higher!order corrections with respect to h:a[ However\ such corrections have not been
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developed\ while consideration of nonzero contour stresses as main e}ects is incorrect[ In this
paper both isotropic and anisotropic I!beams are studied[ Vlasov|s theory is justi_ed from the
asymptotic point of view\ and consistently generalized for anisotropic beams[ The derivation is
based on a general procedure called the variational!asymptotic method\ which was developed by
Berdichevsky and his collaborators[ While the basic notions of this method are given in this
paper\ for more detailed description of this method\ as applied to shells\ see Berdichevsky "0868#\
Berdichevsky "0872#\ and Sutyrin and Hodges "0885#\ and beams\ Berdichevsky "0872#\ Berd!
ichevsky "0871#\ and Le "0875#[ The method is based on small parameters\ and the two small
parameters that are employed in the derivation are

a
l
ð 0

h
a

ð 0 "06#

where l\ a\ and h are characteristic length\ cross!sectional size\ and thickness of the walls\ respec!
tively[

Discussion of existing theories and parametric comparison with 2!D numerical results are
provided in section {{Comparing Theories||[ It should be noted that classical coe.cients derived in
the present paper are identical to those that can be obtained following the procedure outlined in
Reissner and Tsai "0861#[ Vlasov|s coe.cients are the same as in Wu and Sun "0881# if the
hoop stress resultants and moments together with membrane shear resultant are set to zero\ and
membrane shear e}ects are disregarded[

1[ Results

For the convenience of the reader the _nal results for anisotropic I!beams are provided here[
The I!beam is viewed as a rigidly connected combination of three plates "where the validity of this
approach is discussed below#[ Flanges do not have to be of identical length\ and the web need not
be connected to the middle of the ~ange "so that\ for example\ a channel can be treated as well#[

The present derivation is based on the two small parameters introduced by eqns "06#[ Only the
leading terms with respect to thickness parameter h:a are retained\ while terms up to the second!
order with respect to the beam small parameter a:l are retained[

For a general anisotropic beam and the 0!D strain energy per unit length\ asymptotically correct
to the second!order\ has the following form]

Erefined � 0
1
abCbcac¦abLbca?c¦

0
1
a?bMbca?c "07#

The classical strain energy provides us only with the interior solution and corresponds to the _rst
term in the expression for re_ned energy[ Here b\ c � 0 [ [ [ 3\ and

a �

F

G

j

J

G

f

U?0
Uý1
Uý2
u?

J

G

f

F

G

j

"08#
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is a column matrix of 0!D strain measures\ where U0 is axial displacement due to extension\ U1

and U2 are transverse displacements due to bending in two orthogonal directions\ and u is the
section rotation due to torsion[ The form of eqns "07# implies that the dominant correction to the
classical theory is associated with u\ while all other corrections will be of higher!order with respect
to the small parameters of the system[

For anisotropic I!beams eqns "07# can be signi_cantly simpli_ed\ and explicit expressions are
obtainable[ The _nal expression for the 0!D strain energy per unit length can be written as

Erefined � 0
1
abCbcac¦abCb4uý¦0

1
C44uý1 "19#

The coe.cients in eqns "19# are expressed in terms of the cross!sectional properties in the following
manner[ For each member of an I!beam the plate strain energy per unit area can be written as

Eplate � 0
1
hEgdnm

e AgdAnm¦
0
1
h2Egdnm

b BgdBnm¦h1Egdnm
eb AgdBnm "10#

where Greek indices vary from 0Ð1^ Egdnm
e and Egdnm

b are fourth!order tensors of 1!D material
constants corresponding to membrane and bending deformation\ respectively\ and Egdnm

eb cor!
responds to coupling between these two types of deformation "see Berdichevsky\ 0872#^ Agd and
Bgd are 1!D "plate# membrane and bending measures of deformation\ respectively\ given by

Agd � 0
1
"vg\d¦vd\g#\ Bgd � −v2\gd "11#

As shown below\ retaining in eqns "10# only the leading terms with respect to small parameters
de_ned in eqns "06# will yield the following simpli_ed expression for the plate strain energy per
unit area]

Eplate � 0
1
Q00A

1
00−Q01A00B01¦

0
1
Q11B

1
01 "12#

Here Qgd can be found as a result of minimization of eqn "10# with respect to the unknowns A01\
A11\ and B11\ so that

Q 0 QÞ−SR−0ST "13#

with the following formulae for QÞ\ R and S]

QÞ � h $
E0000

e 1hE0001
eb

1hE0001
eb 3h1E0101

b % "14#

S � h $
E0001

e E0011
e E0011

eb

1hE0101
eb 1hE0111

eb 1h1E0111
b % "15#

R � h &
E0101

e E0111
e 1hE0111

eb

E0111
e E1111

e hE1111
eb

1hE0111
eb hE1111

eb h1E1111
b
' "16#

The _rst term in eqns "19# corresponds to the classical part of the strain energy\ and the
coe.cients are given by



V[V[ Volovoi et al[ : International Journal of Solids and Structures 25 "0888# 0906Ð0932 0914

Cab � gr¦l¦w

TgaQgdTdb dy "17#

where w stands for the web\ r and l for the right and left ~anges\ respectively^ indices a and b vary
from 0Ð3^ 1×3 {{transition|| matrix Tga expresses the relevant 1!D strain measures "A00 and B01\
associated with extension in axial direction\ and torsion\ respectively# as functions of the contour
coordinate in terms of 0!D strain measures ðeqn "08#Ł[ Explicit formulae for the members of an I!
beam are]

Tw � $
0 −y 9 9

9 9 9 −0% "18#

Tr � $
0 −

a
1

y 9

9 9 9 −0
% "29#

Tl � $
0

a
1

−y 9

9 9 9 −0
% "20#

Coe.cients for correction terms are]

Ca4 � gr¦l¦w

hQ0gTga dy

C44 � gr¦l¦w

h1Q00 dy "21#

Integration is performed over the contour of the cross!section^ and h is a sectorial coordinate in
the circumferential direction if the pole is located in the middle of the web ðh is de_ned in eqns
"04#Ł[

It is necessary to note that the capability of the asymptotic method to describe dominant end
e}ects\ and thus obtain a re_ned beam theory\ is somewhat counterintuitive[ The end e}ects are
related to deformations with short wavelength along the beam*deformation with wavelength of
the order of a[ Therefore\ strictly speaking\ the small parameter a:l of the asymptotic derivation
ceases to be small\ and procedure becomes self!contradictory[ The present analysis shows\ however\
that in the cases when end e}ects are important for global elastic properties of the beam\ the
disturbances away from the ends have wavelengths large enough " for the I!beams under consider!
ation\ 3a ³ 0:k ³ 19a# to be captured by the second!order terms of the variational!asymptotic
procedure with very good accuracy "see Fig[ 4 and Section {{Comparing Theories||#[ Similar
situations are often encountered in asymptotic derivations] asymptotic theories typically work
beyond the range for which they are originally developed[

2[ Outline of variational!asymptotic method

This section is intended to serve as a quick reference for the reader who is unfamiliar with the
variational!asymptotic method\ which is repeatedly applied to di}erent cases in the following
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sections[ We limit the description of the method to beams\ specifying the small parameter as a:l[
While consideration of the practical cases is pivotal for understanding this method and some
details vary from one case to the other\ it is important to view the forest instead of the trees[
Therefore\ it may be advisable to skip this section in the _rst reading\ and proceed with con!
sideration of speci_c examples[ Then\ if necessary to understand details\ the reader can return to
this section in order to obtain a more complete view of the method[

"A# The preliminary steps of the asymptotic procedure yield what is sometimes called the
{{zeroth|| approximation[ The sole purpose of this part is to establish the {{building blocks|| of the
solution by eliminating terms in energy\ that are {{excessively large|| with respect to the small
parameter a:l[ There are always two such terms for beams[ Let us note that it is the relative order
of terms\ which is important in the asymptotic method\ so it is customary to assume the largest
term in the energy which cannot be minimized to zero to be of order unity with respect to a:l[ Then
the terms which can be "and should be# minimized to zero will be of order "a:l#−1 and "a:l#−0[
Thus\ the preliminary part consists of the two steps]

"i# Elimination of all terms of order "a:l#−1[ All terms in energy which contain the small parameter
"i[e[\ containing derivative with respect to axial coordinate# are disregarded[ The remaining
{{main|| part of energy is minimized with respect to the displacement _eld[ The general solution
for the minimizing displacement _eld corresponds to four motions of the cross!section as a
rigid body\ or {{classical|| degrees of freedom[ This step alone sometimes is also referred as
{{zeroth|| approximation\ so the caution is advised while using this term\ although the desire
to avoid names employing negative numbers is understandable[

"ii# Elimination of all terms of order "a:l#−0[ This step follows the general procedure\ which is
basically an {{induction step|| "see below#] _nding the approximation of order N¦0 if we know
the approximation of order N\ with the one simplifying di}erence that the _nal calculation of
the strain energy is not needed\ since it is minimized to zero at this step[ It is important to
note\ that while we eliminated terms of order "a:l#−0\ terms of order "a:l#9 remain[

"B# The {{induction step|| consists of searching the displacement _eld as a perturbation of the
displacement _eld of the previous approximation]

"i# Unknown perturbations wi are introduced[
"ii# Strains as functions of wi are calculated and substituted into the energy[
"iii# Only the leading terms with respect to the small parameter are retained[
"iv# Energy is minimized with respect to wi[
"v# Minimizing the energy\ we obtain wi as functions of the {{classical|| degrees of freedom "which
depend only on the axial coordinate# and their derivatives\ with explicit dependence on the cross!
sectional coordinates\ so the energy density can be integrated over the cross!section to yield 0!D
energy density[

"C# After the preliminary part completed\ the _rst full cycle described in B is conducted to
obtain the next approximation[ If further approximations are needed\ the displacement _eld of the
previous order is perturbed again\ and steps B"i#ÐB"v# are repeated[

Three important points have to be noted here]

"0# Orders of the perturbations are not assumed a priori\ but rather obtained as a result of the
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minimization[ Generally speaking at the _rst full cycle of the asymptotic procedure per!
turbations give contribution to the energy of order "a:l#9[ In that case perturbations combined
with the displacement obtained in the preliminary stage yield the _rst!order approximation\
which is equivalent to classical beam theory[ In order to obtain terms in the energy of second
order\ one has to consider perturbation of the _rst!order results and repeat the whole procedure
of minimization[ For some cases\ such as torsion of isotropic strips\ however\ perturbations
of the _rst!order vanish\ and we obtain the terms of the second!order at the _rst step\ whereas
classical terms are fully represented by the preliminary approximation[

"1# To render the solution of this minimization procedure unique\ we need to impose some
constraints on the perturbations[ The standard option is to eliminate rigid body motions of
the cross!section\ already accounted for in the previous approximation[ Some other choice of
the constraints might be convenient from the standpoint of simplifying the calculations^ and
if the resulting 0!D problem is not degenerate in some sense\ _nal results will not depend on
the choice of the constraints\ provided the 0!D variables are de_ned correctly[

"2# This procedure is valid for general beams and does not require use of the thickness small
parameter h:a[ There are two possibilities for using this parameter]
"A# Consider a general beam\ minimize the energy with respect to wi and thus\ reduce 2!D

dimensional problem to 0!D by solving a 1!D problem over the cross!section at each step
of the asymptotic procedure[ In this situation the parameter h:a can be used each time the
1!D problem is solved[

"B# Take advantage of classical plate theory from the very beginning\ and apply the asymptotic
procedure to an e}ectively 1!D problem[

As expected\ both methods lead to identical results for some benchmark problems\ thus con_rming
validity of the second approach[ This approach is much more convenient from the computational
point of view and\ therefore\ was used in this paper[

3[ Torsion of isotropic strips

As a starting point isotropic strips are considered[ Some results of this section will be used in
the following derivation for I!beams[ The system of coordinates has x0 0 x\ x1 0 y\ and x2 0 z as
the coordinates along the beam\ along the width of the strip\ and through the thickness\ respectively[
The cross!sectional dimensions are denoted as h and a\ where h is the constant thickness and a the
width of the strip\ respectively^ "h:a# ð 0[ The presence of the small parameter h:a allows us to
consider the strip as a plate and apply classical plate theory "with in!plane coordinates x and y\
and out!of!plane coordinate z#[

Then the strain energy of the strip can be expressed in terms of plate displacements vi[ The
expression for plate strain energy per unit area in eqns "10# reduces for isotropic plates to

Eplate � mh"sA1
gg¦AgdAgd#¦

mh2

01
"sB1

gg¦BgdBgd# "22#

where

s 0 l:"l¦1m# "23#
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and where m and l are the Lame� constants\ and strain measures Agd and Bgd are given by eqns "11#[
2!D displacements can be recovered by use of

ug � vg−zv2\g

u2 � v2−szvg\g¦
s

1 0z1−
h1

011 v2\gg "24#

3[0[ Preliminary steps

Discarding all terms with the derivatives with respect to x0 in eqn "22# we obtain the following
general solution for the displacement _eld that minimizes eqn "22#]

v0 � U0"x#

v1 � U1"x#

v2 � U2"x#¦u"x#y "25#

where U0 is axial displacement due to extension\ U1 and U2 are transverse displacements due to in!
plane and out!of!plane bending\ respectively\ and u is the section rotation due to torsion[ These
are the {{classical|| 0!D degrees of freedom[

Only the pure torsion case is considered\ and thus we set U0 0 U1 0 U2 0 9[ This case can be
studied independently\ since in the isotropic case torsion is neither coupled with bending nor
extension[ It could be easily checked that the second part of the preliminary procedure is not
needed here\ since the displacement _eld obtained already gives a contribution to the strain energy
of needed order "i[e[\ in this case of order u?h#[ Note that for bending this is not the case "this will
be demonstrated in the section for anisotropic I!beams#[

One can recover 2!D displacements "leaving only the leading terms with respect to a:l# using
eqns "24# to show that this displacement _eld indeed corresponds to the classic torsion]

u0 � −yzu?

u1 � −zu

u2 � yu "26#

3[1[ First! and second!order approximations

The next step is to perturb the plate displacement _eld

v0 � w0

v1 � w1

v2 � uy¦w2 "27#

where wa and w 0 w2 are the in!plane and out!of!plane perturbations\ respectively\ subject to
constraints that eliminate rigid!body motion of the cross!section[ Substituting this _eld into the
expression for the strain energy\ one can see that the problem splits into two separate ones]
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"0# For the unknowns w0 and w1\ this problem evidently leads us to the trivial solution w0 � w1 � 9\
since there are no linear terms exciting these displacements[

"1# The perturbation w enters only into the bending measures\ which can be rewritten as

hB00 � −h"uýy¦w\00#

"a:l#o "a:l#2o

hB01 �−h"u?¦w\01#

o "a:l#1o

hB11 �−hw\11

"a:l#o "28#

Bending strain measures are multiplied by h here and in the following derivation to make estimation
of the orders in the energy more convenient[ Here we assume that the magnitude of strains is
o ¼ u?h\ which allows us to calculate the order of u[ Then the orders in the strain measures are
de_ned uniquely\ as shown under each term[ Orders of terms containing w are determined from
retaining leading terms in strain energy[ One comes from B11 and is proportional to w1

\11^ the other
stems from B01 and is proportional to u?w\01[ To _nally determine the order\ we reckon that these
two terms should be of the same order if w is to minimize the energy[ It now becomes evident that
the _rst!order approximation is e}ectively zero\ and we are looking here for the second!order
approximation "since w will give a contribution to the energy of order "a:l#1o1#[

Assuming that the perturbation w does not contribute to the rotation of the strip as a rigid body
we obtain Ða:1

−"a:1# yw dy � 9[ One can check by integration that this constraint can be rewritten as

g
a:1

−"a:1# 0y
1−

a1

3 1w\1 dy � 9 "39#

Introducing the Lagrange multiplier l0uý for the constraint\ the integrand of the functional to
be minimized in order to _nd w\ is

F1 �"s¦0#w1
\11¦3u?w\01¦1suýyw\11¦l0uý 03

y1

a1
−01w\1 "30#

Let us note\ that the total strain energy of a strip is

mh2

01 g
l

9

"F0¦F1# dx0 "31#

where F0 contains all the terms without w[ The integration by parts of eqns "30# will a}ect the
boundary conditions of the resulting 0!D theory\ but not the governing equation[ Therefore\ we
can integrate the second term in the strain energy by parts with respect to the axial coordinate and
denote w\1 0 cuý\ so the expression for F1 will become
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F1 � $"s¦0#c1
\1−3c¦1sc\1y¦l0 03

y1

a1
−01c% uý1 "32#

This leads to a di}erential equation

−1c\11"s¦0#−1s−3¦l0 03
y1

a1
−01� 9 "33#

with boundary conditions at y � 2"a:1# given as

ð1c\1"s¦0#¦1syŁ =y�2"a:1# � 9 "34#

The solution of this problem will be l0 � −5 and

c\1 �
0−s

0¦s
y−

3y2

a1"0¦s#
"35#

Calculating the contribution to the energy of terms that contain w\ one obtains

min"1F1# � g
a:1

−"a:1#

"0¦s#w1
\11 dy

� uý1a2 $
1"8n−1#

6 = 04
−

s1

"0¦s# = 01% "36#

Adding the terms from the zeroth approximation we obtain the _nal expression for total 0!D
energy per unit length for an isotropic strip]

1Erefined � m"u?1J¦uý1G# "37#

where

J �
ah2

2

G � $
1"0¦n#

011
¦

"8n−1#
5 = 6 = 04% a2h2 "38#

and where J is the classical torsional rigidity[ As this example shows\ the terms with coe.cient G
contain the Vlasov term along with an additional correction term "underlined#[ This correction is
of the same order as Vlasov|s term with respect to h:a and may at _rst glance appear to be
signi_cant[ However\ the correction to Vlasov|s term is insigni_cant from a practical point of view\
since the entire term with coe.cient G is of order h2a2:l3\ and is thus small compared to the classical
term which of order h2a:l1[
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4[ Isotropic I!beams

Let us consider symmetric isotropic I!beams[ The width of the web and ~anges is denoted as a
and b\ respectively^ and the constant thickness of both ~anges and the web is h[ As shown in Fig[
0\ for each of the plates which comprises the I!beam we introduce local coordinates y�\ z�\ which
originate in the middle of the member\ where � can be r for the right ~ange\ l*for the lower ~ange\
w*for the web[ We will also use these indices to indicate any quantities pertaining to a particular
member[ We consider the web as the {{base|| of the cross!section\ so that the global coordinates
coincide with the local web coordinates "so we can omit the index w#[ The goal is to express all
relevant quantities for each plate in terms of those of the {{base|| member[ This general approach
is chosen because it is also valid for open sections that are more complicated than I!beams and
consist of an arbitrary number of members[

For each member the procedure described in the previous section for the strip is repeated\ so
that the strain energy can be written in terms of membrane and bending measures given by eqn
"22#[ The total strain energy will now consist of three parts]

g
a:1

−"a:1#

Fw dy¦g
b:1

−"b:1#

F r dyr¦g
b:1

−"b:1#

F l dyl "49#

Membrane and bending measures ðeqns "10#Ł for each member can be expressed in terms of
displacements of these members\ and by minimizing the energy we will _nd these displacements at
each step of the asymptotic procedure[ We require for the disturbance w�i \ as well as w�2\1 to vanish
in the middle of each member[ This corresponds to elimination of four cross!sectional rigid!body
motions for each member[ Only the right ~ange will be considered\ with the implication that the
procedure is identical for the left ~ange[ The ~anges and web are rigidly connected\ so we use the
following matching conditions for the displacements at the junction]

vr
0 =yr�9 � vw

0 =y�"a:1#

vr
1 =yr�9 � −vw

2 =y�"a:1#

vr
2 =yr�9 � vw

1 =y�"a:1#

vr
2\1 =yr�9 � vw

2\1 =y�"a:1# "40#

4[0[ Preliminary steps

For each member of the I!beam we can write expressions for the displacement _eld identical to
those of a strip]

v0 � U�0"x#¦w�0

v1 � U�1"x#¦w�1

v2 � U�2"x#¦u�"x#y¦w�2 "41#

As in the case of the strip we can consider torsion separately\ thus setting Uw
i to zero[ Terms of

order "a:l#−0 do not exist\ so no minimization is needed for the terms of that order[
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4[1[ First!order approximation

Using eqns "40# we can express the classical degrees of freedom of the ~ange displacement _eld
in terms of those of the web "within the precision of the _rst!order approximation#]

U r
0 � 9

U r
1 � −

a
1

u

U r
2 � 9

ur � u "42#

The _rst approximation for the web will still be zero as it was in the case of the strip[ For the
~anges\ however\ we have a slightly di}erent situation[ The displacement _eld for the right ~ange
is given as

vr
0 � wr

0

vr
1 � −

a
1

u¦wr
1

vr
2 � uyr¦wr

2 "43#

Writing expressions for the membrane measures of the plate we obtain

Ar
00 � wr

0\0

"a:l#o

1Ar
01 �−

a
1
u?¦wr

0\1¦wr
1\0

o o "a:l#1o

Ar
11 �wr

1\1

"a:l#o "44#

Minimization of the energy with respect to wr
0 and wr

1 dictates the order of each term\ written
under it[ Since the only linear terms disturbing these two displacement _elds will come from "a:1#u?
in Ar

0\1\ "wr
0\1#1 is of the same order as wr

0\1"a:1#u? and "wr
1\1#1 is of the same order as wr

1\0"a:1#u?[
There is no change to B r

gd in the _rst approximation compared to the expression for the strip[
Minimizing the energy with respect to wr

i we obtain wr
1 � wr

2 � 9 and wr
0\1 �"a:1#u?[ Satisfying

the constraint wr
0"9# � 9\ we obtain wr

0 � 0
1
yrau? 0 hu? where h is a sectorial coordinate de_ned in

eqns "04#[

4[2[ Second!order approximation

The web problem is almost identical to the strip problem of eqns "30#\ just with di}erent
boundary conditions and di}erent value of the Lagrange multiplier[ Its total contribution to the
energy will be also of order h2a2[
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So we can focus our attention at the ~anges\ conducting the derivation only for the right ~ange\
and taking advantage of the fact that the procedure is similar for the left ~ange "with the obvious
changes in the matching conditions#[ Strictly speaking\ while using matching conditions eqns "40#
we need to add in eqns "42# terms of the second order[ That would result in addition to U r

1 a term
proportional to u?\ which would also result in terms of order h2a2[ Terms of this order are beyond
our scope of interest\ so eqns "42# can still be employed[ To distinguish the new disturbances from
those of the previous step we will denote a new one with a tilde\ so that

vr
0 � yr a

1
u¦w½ r

0

vr
1 � −

a
1

u¦w½ r
1

vr
2 � uyr¦w½ r

2 "45#

As in the case of the strip and the web the w½ r
2 terms will result in a contribution of order h2b2 in

the _nal expression for the energy^ again\ the problem is almost identical to the one for a strip\
eqns "30#[ However\ for w½ r

0\ and w½ r
1 we obtain for the membrane plate measures

Ar
00 � yr a

1
uý¦w½ r

0\0

"a:l#o "a:l#2o

1Ar
01 �w½ r

0\1¦w½ r
1\0

"a:l#1o "a:l#1o

Ar
11 �w½ r

1\1

"a:l#o "46#

Minimizing s"Ar
gg#1¦Ar

gdA
r
gd we immediately obtain

w½ 0\1 � 9

w½ 1\1 � −
s

1"s¦0#
uýya "47#

So the total contribution to the energy Aab will be

a1

3
mhuý1 0s¦0−

s1

"s¦0#1 g
b:1

−"b:1#

y1 dy � b2a1h
E
37

uý1

1
"48#

which is precisely Vlasov|s term[
Therefore\ for an I!beam\ where the nonclassical e}ects become pronounced\ Vlasov|s term is

of order b2a1h and dominates the correction to Vlasov|s term\ which is of order h2"a2¦b2# and
thus\ can be neglected[ This provides a solid theoretical foundation for the validity of Vlasov|s
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theory for isotropic I!beams] Vlasov|s theory is asymptotically correct to the second!order with
respect to a:l if only the leading terms with respect to h:a are kept[

5[ Anisotropic I!beams

The most general case is considered\ i[e[\ when the magnitude of strains due to extension\ bending
and torsion are of the same order U?0 ¼ aUý1 ¼ aUý2 ¼ hu? ¼ o[ Note that here the width of the
~anges\ b\ is assumed to be of the same order as the height of the web\ a[

5[0[ Preliminary steps

Now the plate energy density will be given by eqns "08#[ The _rst step will be identical to that
for isotropic I!beams\ resulting in eqns "41#[ However\ unlike the torsion of isotropic I!beams\
there are some terms of order "a:l#−0 which have to be eliminated[ If we disturb the original
displacement _eld\ eqns "41#\ there will be only one strain measure which has terms of that order\
namely

1A�01 � U?1¦w¼ �0\1¦w¼ �1\0

"a:l#−0o < < "59#

where the hats "g# refer to disturbances of the displacements associated with the preliminary step[
It is evident\ that the only way to eliminate this large term is to set w¼ �0\1 � −U?�1 "note\ that the
third term in the right hand side of eqn "59# cannot be of the order "a:l#−0 because that would
imply a term of order "a:l#−1 in A�11#[ Using the constraint w¼ �0"9# � 9\ we obtain w¼ �0 � −U?�1y�^
w¼ �1 � w¼ �2 � 9[ It needs to be noted that the preliminary steps are actually independent of material
properties^ we did not encounter this term for isotropic I!beams only because we were able to limit
our consideration to torsion since it is uncoupled from bending and extension[

5[1[ First!order approximation

We now perturb the above displacement _eld so that the plate measures for each member now
are

A�00 � a�0−y�a�1¦w�0\0

o o "a:l#o

1A�01 �w�0\1¦w�1\0

o "a:l#o

A�11 �w�1\1

o

hB�00 �−h"a�2¦a?�3y�¦w�2\00#

"h:a#o "a:l#o "a:l#1o
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hB�01 �−h"a�3¦w�2\01#

o "a:l#o

hB�11 �−hw�2\11

o "50#

where a�i are given by eqns "08#[
In accordance with the variational!asymptotic method\ we need to _nd the w�i in terms of a�i by

substituting the strain measures\ eqns "50#\ into eqns "19# and minimizing the resulting expression\
leaving only the leading terms with respect to parameter a:l[ We will also take advantage of the
small parameter h:a[ Orders of each term in eqns "50# are calculated by evaluating the order of all
possible combinations of terms in the strain energy[ Let us repeat that orders of perturbations are
de_ned uniquely\ once the orders of a�i are given[ Since the leading terms do not include the
derivative of w�i along the contour\ minimization can be conducted algebraically and independently
for each point of the contour[ It is convenient to introduce matrix notation[ Known quantities are]

H� 0 6
AÞ�00

BÞ�017� 6
a�0−y�a�1

−ha�3 7 "51#

where the bar refers to the main part of the strain measure in an asymptotic sense\ i[e[\ terms of
order o[

Let us note that BÞ�00 is also known but can be neglected since it is of order "h:a#o[ Minimization
with respect to w�i requires expression A�01\ A�11\ B�11 in terms of those known quantities]

8
w�0\1

w�1\1

w�2\11
90 8

1AÞ�01

AÞ�11

BÞ�11
9� −R�−0S�H� "52#

where matrices of material coe.cients S� and R� are given by eqns "15# and "16#\ respectively[
Substituting eqns "52# into the plate strain energy per unit area\ eqn "10#\ and denoting

Q� �"QÞ�−S�R�−0ST�# "53#

where QÞ� is given in eqn "14#\ we can rewrite it as

Eplate � 0
1
Q00A

1
00¦Q01A00B01¦

0
1
Q11B

1
01 "54#

If H� is expressed in terms of the chosen 0!D strain measures a for the beam\ so that

H� � T�a "55#

then the _nal expression for the strain energy per unit length will be given by

1Eclassical � gr¦l¦w

H�TQ�H� dy "56#

where integration is carried out over all members of the I!beam[ While Tw "web# can be immediately
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obtained from eqn "52#\ which yields eqns "18#\ the matching conditions\ eqns "40#\ are required
to express ar in terms of aw 0 a in order to obtain Tr[

Up to terms of _rst order\ where terms are multiplied by the corresponding characteristic
dimension to make them of the same order as they contribute to the strains\ we now have

ar
0 0 U r

0? � U?0−
0
1
aUý1¦

0
1
aw0\0

o "a:l#o

aar
1 0 aU r

1ý�−aUý2−
0
1
a1uý−0

1
a1w2\00

o "a:h#"a:l#o "a:h#"a:l#1o

har
2 0 hU r

2ý�hUý1¦hw1\00"a:1#

"h:a#o "h:l#"a:l#o

har
3 0 hur?�hu?¦hw2\01"a:1#

o "a:l#o "57#

Only the underlined terms will contribute to the leading terms in energy\ and therefore only those
terms are needed to provide eqns "55#[ The explicit expressions for Tr and Tl are given by eqns "29#
and eqns "20#[ Substituting these expressions into the strain energy density we obtain the classical
energy coe.cients Cbc from eqn "07# as given by eqn "17#[

This derivation yields results identical to those obtained by the procedure outlined by Reissner
and Tsai "0861# where equilibrium equations are used\ and where Nss\ Nzs and Mss are assumed to
be negligibly small[ This results in partial inversion of the 5×5 matrix of 1!D material constants
from classical laminated plate theory[

5[2[ Second!order approximation

In a situation similar to the isotropic case\ the contribution to the second!order terms from the
web will be of order h2a2[ For the ~anges\ however\ the double underlined term for a1 in eqns "57#
will induce dominant terms in the correction since there is an inverse of another small parameter
h:a which distinguishes this term from all the others[

The following analysis pertains to the ~anges only[ To distinguish from the disturbances of the
_rst order\ we denote the new disturbances by w½ r

i [ The plate strain measures are now

Ar
00 � a¹ r

0−yra¹ r
1¦y

a
1

uý¦wr
0\0¦w½ r

0\0

o o "a:h#"a:l#o "a:l#o "a:l#1o

1Ar
01 �wr

1\0¦wr
1\0¦w½ r

0\1¦w½ r
1\0

o "a:l#o "a:h#"a:l#o "a:l#1o
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Ar
11 �wr

1\1¦w½ r
1\1

o "a:h#"a:l#o

hB r
00 �−h"a¹ r

2¦a¹ r
3?y¦wr

2\00#

"h:a#o "a:l#o "a:l#1o

hB r
01 �−h"a¹ r

3¦wr
2\01¦w½ r

2\01#

o "a:l#o "a:l#1o

hB r
11 �−h"wr

2\11¦w½ r
2\11#

o "a:h#"a:l#o "58#

Here the over!bars are used to denote the {{main|| part "i[e[\ of order o# of the ai from eqns "57#\
and the double underlined term is written out explicitly[ None of the other terms from eqns "57#
contribute to the leading terms of the energy and therefore are neglected[ Leaving only the leading
terms "underlined# with respect to h:a in eqns "58# we can calculate terms of order "a:l#1o1[
Minimization in order to _nd w½ r

i is identical to the determination of wr
i with the one simplifying

di}erence being that the only {{driving|| term for the disturbances will be Ar
00\ so that

C44 �
0
3 gr¦l

y1a1Q00 dy "69#

This corresponds to the only non!zero term M33 in eqns "06#[ The physical meaning of the obtained
material coe.cient Q00 corresponds to the e}ective "averaged through the thickness of the wall#
Young|s modulus in the axial direction[ The contributions to this term from w½ 1\1\ w½ 1\1\ and w½ 2\11

will be of the order a1b2h\ the same as the main term\ and thus cannot be disregarded[ This implies
that the commonly invoked assumption of the cross!sections of thin!walled beams being rigid in
their own planes is incorrect[

In addition we will have some terms of order "a:l#o1\ which correspond to cross terms between
the dominant term in A00 and classical terms giving the only non!zero terms Lb3 from in eqns "1#]

Cb4 �
0
1 gr¦l

yaQ0gTgb dy "60#

Note that the w½ i do not contribute to this cross!term due to the nature of the variational!asymptotic
procedure "since the _rst approximation itself was obtained as a result of minimization procedure
at the previous step#[ Equations "69# and "60# can be written in the form of eqns "21# by using the
sectorial coordinate[

6[ Comparing theories

First let us compare decay rates given by the 2!D computer code of Volovoi et al[ "0884#\
Volovoi et al[ "0887# and Vlasov theory as described in Vlasov "0850# for the isotropic case[ We
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consider n � 9[31 and a:b � 1[ Figure 4 shows prediction of the decay rate as a function of
thickness\ given by asymptotic analysis and 2!D code[ As expected\ the di}erence between the two
diminishes as we decrease the thickness "and thus\ decrease the decay rate\ so that assumption of
long waves becomes more valid#[ Let us note that as I"bk# tends to zero\ precision of the numerical
method deteriorates due to ill!conditioning\ but the trend within the range of reliable results is
clear[

Next\ it is interesting to compare the decay rate as predicted by asymptotic theory and numerical
results for di}erent values of a:b and h:b[ Figure 5 presents a contour plot of the decay rate for I!
beams with both short and long ~anges[ Figure 6 gives the percentage error for the decay rate[ In
both cases the thickness is normalized with respect to the larger of the two cross!sectional dimen!
sions[ While it is true that\ as noted previously\ for a given a:b ratio the di}erence between two
predictions decreases together with thickness\ another trend is apparent from these results] the
correlation is much better for I!beams with short ~anges^ indeed\ one has to be careful in applying
Vlasov|s theory for I!beams with long ~anges\ unless they are very thin!walled\ whereas for beams
with short ~anges Vlasov|s theory provides excellent results even for relatively thick walls[

As an example of anisotropic I!beams we consider the case exhibiting bendingÐtorsion coupling
which was studied quite extensively "see Chandra and Chopra\ 0880^ Badir et al[ 0882#\ since some
experimental data were available as well as numerical results[ Its symmetric cross!section is made
from graphite!epoxy material and had a ð9>:89>Ł3 lay!up in the web and a ð"9>:89>#2:"u>#1Ł[ The
angle u of the two top plies for both top and bottom ~anges is the varying parameter "see Fig[ 7#[
To validate the asymptotic procedure h:b was also varied\ while a:b � 9[4 is kept constant\ and
predictions for the decay rate were compared to the numerical 2!D results[ Note that in accordance
with the asymptotic theory the rate of the decay varies linearly with the thickness\ so it is convenient
to normalize the decay rate with respect to the decay rate of some reference thickness "we have
chosen h � 9[93b as such reference point\ because that was the thickness of the beam studied by

Fig[ 5[ Lines of constant decay rate for isotropic I!beams from 2!D analysis[
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Fig[ 6[ Lines of constant percentage di}erence between the decay rate for isotropic I!beams from asymptotic theory and
2!D analysis[

Fig[ 7[ Lay!up of anisotropic I!beams[

the cited references#[ After this normalization all asymptotic curves will collapse into one "Fig[ 8#[
As expected correlation is the best for low h:b ratios\ and the di}erence between asymptotic and
2!D results is indeed of order h:b[ It is interesting to notice the decreasing sensitivity of the decay
rate with respect to the varying ply angle as the thickness increases[
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Fig[ 8[ Decay rate for anisotropic I!beams[

Let us now compare the asymptotic solution with the analytical solutions provided in Chandra
and Chopra "0880# and Badir et al[ "0882#[ The _rst method assumed a rigid cross!section and
started from 1!D equilibrium equations[ The second\ however\ provided more general treatment
of thin!walled beams where\ similar to the present approach\ the variational!asymptotic method
was employed[ Unfortunately\ a miscalculation of the orders of some terms was made there[ The
numerical consequence of this error is insigni_cant for most material properties^ however\ for
certain lay!ups the di}erence can be noticeable\ as shown below[ It should also be mentioned that
the variational!asymptotic procedure was carried out in Badir et al[ "0882# only to recover the
terms of the _rst!order\ and Vlasov|s term was included in an ad hoc manner[ No rigorous
evaluation of other terms of the order "a:l#1o1 was conducted[

While all three methods di}er in their respective approaches\ it is possible "and in fact\ quite
convenient# to pin!point the source of the quantitative di}erences in terms of notations used in
the present paper[ E}ectively\ in Chandra and Chopra "0880# the second term in eqn "13# is
neglected\ so that Qgd � QÞgd[ The di}erence between the present asymptotically correct theory and
that given in Badir et al[ "0882# is more subtle] while calculating Qgd by using eqn "13#\ the
importance of the terms related to B11 "the bending strain measure in the contour direction# was
neglected\ which resulted in crossing out the last column in the matrix S ðeqn "15#Ł\ and both last
column and last row in the matrix R ðeqn "16#Ł[

Figure 09 demonstrates the decay rate for h � 9[904b as predicted by the three theories[ It is
interesting to see how the di}erence in the predicted decay rate will in~uence the results of 0!D
theory for speci_c boundary conditions[ For all considered examples one end is clamped\ and the
warping is restrained at the free end[ Results for the variation of induced tip twist under tip unit
vertical shear load are shown in Fig[ 00[ The results labelled {{Gandhi and Lee|| are taken from
Gandhi and Lee "0881#\ generated therein by use of the 2!D code described in Stemple and Lee
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Fig[ 09[ Decay rate for anisotropic I!beams from di}erent analytical theories "h � 9[904b#[

Fig[ 00[ Induced tip twist for a unit tip shear load "l � 25ý#[

"0877#[ Results for tip twist under a unit tip torsional load are given in Fig[ 01[ It can be observed
by studying Figs 09Ð01 that the decay rate is quite sensitive to con_guration parameters\ and
di}erences in the predicted decay rate strongly correlate with di}erences in the predictions of the
resulting 0!D theories[ Experimental results reported in Chandra and Chopra "0880# mostly pertain
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Fig[ 01[ Tip twist for a torsional tip unit load "l � 25ý#[

to the cases of u � 9> or u � 89> where all three theory give identical predictions[ However\ the
di}erence becomes quite signi_cant for other ply angles\ especially in the range 29> ³ u ³ 69>[

It has to be mentioned that any prediction which has a relative error less than the order of h:b
is but a mere coincidence\ since the latter is the magnitude of an error intrinsic to the asymptotic
procedure[

7[ Conclusions

This paper has presented an asymptotic treatment of the statics of thin!walled\ anisotropic
beams[ The following conclusions have been reached]

"0# Classical laminated plate theory has been shown to be a suitable starting point for development
of a theory for describing end!e}ects in thin!walled I!beams[ This results in a simpler devel!
opment than would be obtained were the theory started from 2!D elasticity or re_ned shell
theory\ with no e}ect on the resulting theory as long as "h:a#1 ð 0[

"1# An asymptotic veri_cation of Vlasov|s theory is presented for isotropic I!beams[ It is shown
to be asymptotically incorrect to assume that the cross!section is rigid in its own plane[ One
cannot consistently neglect both stresses and strains associated with local plate membrane and
bending e}ects[ The asymptotically correct theory can be derived by neglecting stresses[ This
is especially important for asymptotically correct recovery of 2!D _eld variables[

"2# Vlasov|s theory is consistently extended to anisotropic beams[ As in the isotropic case\ the
asymptotically correct theory can only be derived by neglecting stresses associated with local
plate membrane and bending e}ects[

"3# A theory in which asymptotic terms of second!order in a:l are retained is capable of describing
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end!e}ects in beams for slowly decaying disturbances[ If the decay rate is large\ the theory
ceases to be valid^ but this is a moot point\ since end!e}ects are not signi_cant in that case
anyway
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